14,048 research outputs found

    Spin Hot Spots in vertically-coupled Few-electron Quantum Dots

    Full text link
    The effects of spin-orbit (SO) coupling arising from the confinement potential in single and two vertically-coupled quantum dots have been investigated. Our work indicates that a dot containing a single electron shows the lifting of the degeneracy of dipole-allowed transitions at B=0 due to the SO coupling which disappears for a dot containing two electrons. For coupled dots with one electron in each dot, the optical spectra is not affected by the coupling and is the same as the dot containing one electron. However, for the case of two coupled dots where one partner dot has two interacting electrons while the other dot has only one electron, a remarkable effect is observed where the oscillator strength of two out of four dipole-allowed transition lines disappears as the distance between the dots is decreased

    The Fractional Quantum Hall States of Dirac Electrons in Graphene

    Full text link
    We have investigated the fractional quantum Hall states for the Dirac electrons in a graphene layer in different Landau levels. The relativistic nature of the energy dispersion relation of the electrons in the graphene significantly modifies the inter-electron interactions. This results in a specific dependence of the ground state energy and the energy gaps for electrons on the Landau level index. For the valley-polarized states, i.e. at \nu =1/m, m being an odd integer, the energy gaps have the largest values in the n=1 Landau level. For the valley-unpolarized states, e.g., for the 2/3 state, the energy gaps are suppressed for the n=1 Landau level as compared to the n=0 level. For both the n=1 and n=0 Landau levels the ground state of the 2/3 system is fully valley-unpolarized.Comment: accepted for publication in Phys. Rev. Let

    Hamiltonian Formulation of Quantum Hall Skyrmions with Hopf Term

    Full text link
    We study the nonrelativistic nonlinear sigma model with Hopf term in this paper. This is an important issue beacuse of its relation to the currently interesting studies in skyrmions in quantum Hall systems. We perform the Hamiltonian analysis of this system in CP1CP^1 variables. When the coefficient of the Hopf term becomes zero we get the Landau-Lifshitz description of the ferromagnets. The addition of Hopf term dramatically alters the Hamiltonian analysis. The spin algebra is modified giving a new structure and interpretation to the system. We point out momentum and angular momentum generators and new features they bring in to the system.Comment: 16pages, Latex file, typos correcte

    Magnetic field induced luminescence spectra in a quantum cascade laser

    Full text link
    We report on our study of the luminescence spectra of a quantum cascade laser in the presence of an external magnetic field tilted from the direction perpendicular to the electron plane. The effect of the tilted field is to allow novel optical transitions because of the coupling of intersubband-cyclotron energies. We find that by tuning the applied field, one can get optical transitions at different energies that are as sharp as the zero-field transitions.Comment: 4 pages (LaTex format), 3 figures (postscript

    Thermalization of hot electrons via interfacial electron-magnon interaction

    Full text link
    Recent work on layered structures of superconductors (S) or normal metals (N) in contact with ferromagnetic insulators (FI) has shown how the properties of the previous can be strongly affected by the magnetic proximity effect due to the static FI magnetization. Here we show that such structures can also exhibit a new electron thermalization mechanism due to the coupling of electrons with the dynamic magnetization, i.e., magnons in FI. We here study the heat flow between the two systems and find that in thin films the heat conductance due to the interfacial electron-magnon collisions can dominate over the well-known electron-phonon coupling below a certain characteristic temperature that can be straightforwardly reached with present-day experiments. We also study the role of the magnon band gap and the induced spin-splitting field induced in S on the resulting heat conductance and show that heat balance experiments can reveal information about such quantities in a way quite different from typical magnon spectroscopy experiments

    Temperature dependence of spin polarizations at higher Landau Levels

    Full text link
    We report our results on temperature dependence of spin polarizations at ν=1\nu=1 in the lowest as well as in the next higher Landau level that compare well with recent experimental results. At ν=3\nu=3, except having a much smaller magnitude the behavior of spin polarization is not much influenced by higher Landau levels. In sharp contrast, for filling factor ν=83\nu=\frac83 we predict that unlike the case of ν=23\nu=\frac23 the system remains fully spin polarized even at vanishingly small Zeeman energies.Comment: 4 pages, REVTEX, and 3 .ps files, To be published in Physical Review Letter

    Optical Signatures of Spin-Orbit Interaction Effects in a Parabolic Quantum Dot

    Full text link
    We demonstrate here that the dipole-allowed optical absorption spectrum of a parabolic quantum dot subjected to an external magnetic field reflects the inter-electron interaction effects when the spin-orbit interaction is also taken into account. We have investigated the energy spectra and the dipole-allowed transition energies for up to four interacting electrons parabolically confined, and have uncovered several novel features in those spectra that are solely due to the SO interaction.Comment: 4 pages, 3 figure
    • …
    corecore